
#2-1-COA

1. Draw and explain 4-bit arithmetic circuit with
help of Functional table

Arithmetic Circuit
The basic component of an arithmetic circuit is the parallel adder.
By controlling the data inputs to the adder, it is possible to obtain
different types of arithmetic operations.
The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four
full-adder circuits that constitute the 4-bit adder and four multiplexers for
choosing different operations.
There are two 4-bit inputs A and B and a 4-bit output D.
The four inputs from A go directly to the X inputs of the binary adder.
Each of the four inputs from B is connected to the data inputs of the
multiplexers.
The multiplexers data inputs also receive the complement of B.
The other two data inputs are connected to logic-0 and logic-1.
The four multiplexers are controlled by two selection inputs S1 and S0.
The input carry Cin goes to the carry input of the FA in the least
significant position. The other carries are connected from one stage to
the next.
By controlling the value of Y with the two selection inputs S1 and S0 and
making Cin equal to 0 or 1, it is possible to generate the eight arithmetic
microoperations listed in Table 44.

Addition

When S1S0= 00, the value of B is applied to the Y inputs of the adder.
If Cin = 0, the output D = A + B.
If Cin = 1, the output D = A + B + 1.

Both cases perform the add microoperation with or without adding the
input carry.

Subtraction

When S1S0 = 01, the complement of B is applied to the Y inputs of the
adder.

If Cin = 1, then D = A + B + 1. This produces A plus the 2's
complement of B, which is equivalent to a subtraction of A -B.
When Cin = 0, then D = A + B. This is equivalent to a subtract with
borrow, that is, A-B-1.

Increment

When S1S0 = 10, the inputs from B are neglected, and instead, all 0's are
inserted into the Y inputs.

The output becomes D = A + 0 + Cin. This gives D = A when Cin = 0
and D = A + 1 when Cin = 1.
In the first case, we have a direct transfer from input A to output D.
In the second case, the value of A is incremented by 1.

Decrement

When S1S0= 11, all 1's are inserted into the Y inputs of the adder to
produce the decrement operation D = A - 1 when Cin = 0.
This is because a number with all 1's is equal to the 2's complement of 1
(the 2's complement of binary 0001 is 1111). Adding a number A to the
2's complement of 1 produces F = A + 2's complement of 1 = A — 1.
When Cin = 1, then D = A -1 + 1=A, which causes a direct transfer from
input A to output D.

2. Discuss in detail various types of shift micro
operations

Shift Microoperations
Shift microoperations are used for serial transfer of data.
The contents of a register can be shifted to the left or the right.
During a shift-left operation, the serial input transfers a bit into the
rightmost position.
During a shift-right operation, the serial input transfers a bit into the
leftmost position.
There are three types of shifts: logical, circular, and arithmetic.
The symbolic notation for the shift microoperations is shown in Table 4-7.

Logical Shift

A logical shift transfers 0 through the serial input.

The symbols shl and shr represent logical shift-left and shift-right
microoperations.
The microoperations specify a 1-bit shift to the left of the content of
register R and a 1-bit shift to the right of the content of register R, as
shown in Table 4.7.
The bit transferred to the end position through the serial input is
assumed to be 0 during a logical shift.

Circular Shift

The circular shift (also known as a rotate operation) circulates the bits of
the register around the two ends without loss of information.
This is accomplished by connecting the serial output of the shift register
to its serial input.
Symbols cil and cir are used for circular shift left and right,
respectively.

Arithmetic Shift

An arithmetic shift is a microoperation that shifts a signed binary number
to the left or right.
An arithmetic shift-left multiplies a signed binary number by 2.
An arithmetic shift-right divides the number by 2.
Arithmetic shifts must leave the sign bit unchanged because the sign of
the number remains the same when it is multiplied or divided by 2.

Hardware Implementation
A combinational circuit shifter can be constructed with multiplexers as
shown in Fig. 4-12.

The 4-bit shifter has four data inputs, A0 through A3, and four data
outputs, H0 through H3.
There are two serial inputs, one for shift left (IL) and the other for shift
right (IR).
When the selection input S=0, the input data are shifted right (down in
the diagram).
When S = 1, the input data are shifted left (up in the diagram).
The function table in Fig. 4-12 shows which input goes to each output
after the shift.
A shifter with n data inputs and outputs requires n multiplexers.
The two serial inputs can be controlled by another multiplexer to provide
the three possible types of shifts.

Arithmetic Logic Shift Unit
Instead of having individual registers performing the microoperations
directly, computer systems employ a number of storage registers
connected to a common operational unit called an arithmetic logic unit,
abbreviated ALU.

The ALU is a combinational circuit so that the entire register transfer
operation from the source registers through the ALU and into the
destination register can be performed during one clock pulse period.
The shift microoperations are often performed in a separate unit, but
sometimes the shift unit is made part of the overall ALU.
The arithmetic, logic, and shift circuits introduced in previous sections can
be combined into one ALU with common selection variables. One stage
of an arithmetic logic shift unit is shown in Fig. 4-13.
A particular microoperation is selected with inputs S1 and S0. A 4 x 1
multiplexer at the output chooses between an arithmetic output in Di and
a logic output in Ei.
The data in the multiplexer are selected with inputs S3 and S2. The other
two data inputs to the multiplexer receive inputs Ai-1 for the shift-right
operation and Ai+1 for the shift-left operation.
The circuit whose one stage is specified in Fig. 4-13 provides eight
arithmetic operations, four logic operations, and two shift operations.
Each operation is selected with the five variables S3, S2, S1, S0, and Cin.
Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic
operations and are selected with S3S2 = 00.
The next four are logic and are selected with S3S2 = 01.
The input carry has no effect during the logic operations and is marked
with don't-care x’s.
The last two operations are shift operations and are selected with S3S2=
10 and 11.
The other three selection inputs have no effect on the shift.

3. Define instruction code. Explain Direct and
indirect addressing

Instruction Codes
The organization of the computer is defined by its internal registers, the
timing and control structure, and the set of instructions that it uses.
Internal organization of a computer is defined by the sequence of micro-
operations it performs on data stored in its registers.
The computer can be instructed about the specific sequence of
operations it must perform.
The user controls this process by means of a Program.
Program: a set of instructions that specify the operations, operands, and
the sequence by which processing has to occur.
Instruction: a binary code that specifies a sequence of micro-operations
for the computer.
The computer reads each instruction from memory and places it in a
control register. The control then interprets the binary code of the

instruction and proceeds to execute it by issuing a sequence of micro-
operations. – Instruction Cycle
Instruction Code: a group of bits that instruct the computer to perform a
specific operation.

Instruction code is usually divided into two parts: Opcode and
address(operand)

Operation Code (opcode):
A group of bits that define the operation.
Examples: add, subtract, multiply, shift, complement.
The number of bits required for opcode depends on the number
of operations available in the computer.
n bit opcode >= 2^n (or less) operations.

Address (operand):
Specifies the location of operands (registers or memory words).
Memory words are specified by their address.
Registers are specified by their k-bit binary code.
k-bit address >= 2^k registers.

Addressing of Operand
Sometimes it is convenient to use the address bits of an instruction code
not as an address but as the actual operand.
When the second part of an instruction code specifies an operand, the
instruction is said to have an immediate operand.
When the second part specifies the address of an operand, the
instruction is said to have a direct address.
When the second part of the instruction designates an address of a
memory word in which the address of the operand is found, such
instruction has an indirect address.
One bit of the instruction code can be used to distinguish between a
direct and an indirect address.
The instruction code format shown in Fig. 5-2(a). It consists of a 3-bit
operation code, a 12-bit address, and an indirect address mode bit

designated by I. The mode bit is 0 for a direct address and 1 for an
indirect address.
A direct address instruction is shown in Fig. 5-2(b).
It is placed in address 22 in memory. The I bit is 0, so the instruction is
recognized as a direct address instruction. The opcode specifies an ADD
instruction, and the address part is the binary equivalent of 457.
The control finds the operand in memory at address 457 and adds it to
the content of AC.
The instruction in address 35 shown in Fig. 5-2(c) has a mode bit I = 1.
Therefore, it is recognized as an indirect address instruction.
The address part is the binary equivalent of 300. The control goes to
address 300 to find the address of the operand. The address of the
operand in this case is 1350.
The operand found in address 1350 is then added to the content of AC.
The effective address is the address of the operand in a computation-
type instruction or the target address in a branch-type instruction.
Thus, the effective address in the instruction of Fig. 5-2(b) is 457, and in
the instruction of Fig. 5-2(c), it is 1350.

4. Explain different types of computer instructions

Computer Instructions

The basic computer has three instruction code formats, as shown in Fig.
5-5. Each format has 16 bits.
The operation code (opcode) part of the instruction contains three bits,
and the meaning of the remaining 13 bits depends on the operation code
encountered.
A memory-reference instruction uses 12 bits to specify an address and
one bit to specify the addressing mode I.
I is equal to 0 for a direct address and to 1 for an indirect address.
The register-reference instructions are recognized by the operation code
1.11 with a 0 in the leftmost bit (bit 15) of the instruction.
A register-reference instruction specifies an operation on the AC register.
An operand from memory is not needed. Therefore, the other 12 bits are
used to specify the operation to be executed.
An input—output instruction does not need a reference to memory and
is recognized by the operation code 111 with a 1 in the leftmost bit of the
instruction.
The remaining 12 bits are used to specify the type of input—output
operation.
The instructions for the computer are listed in Table 5-2.
The symbol designation is a three-letter word and represents an
abbreviation intended for programmers and users.
The hexadecimal code is equal to the equivalent hexadecimal number of
the binary code used for the instruction.

5. How the computer provides control and timing
signals

Timing and Control
The timing for all registers in the basic computer is controlled by a master
clock generator.
The clock pulses are applied to all flip-flops and registers in the system,
including the flip-flops and registers in the control unit.
Clock pulses do not change the state of a register unless the register is
enabled by a control signal.
Control signals are generated in the control unit and provide control
inputs for the multiplexers in the common bus, control inputs in
processor registers, and microoperations for the accumulator.
There are two major types of control organization:

Hardwired control
Microprogrammed control

Hardwired control Microprogrammed control

Control
Logic

Implemented with gates,
flip-flops, decoders, etc.

Control information stored in a
control memory.

The control memory is
programmed to initiate the
required

sequence of microoperations.

Speed Optimized for fast
operation

Compared with hardwired
control, operation is slow.

Modification Requires changes in
wiring for modifications

Changes or modifications can be
done by updating the
microprogram in control
memory.

Hardwired Control Unit (Block Diagram - Fig. 5-6)

Consists of two decoders, a sequence counter, and several control logic
gates.

An instruction read from memory is placed in the instruction register (IR),
divided into three parts: The I bit, the operation code, and bits 0 through
11.
The operation code in bits 12 through 14 is decoded with a 3 x 8
decoder, generating outputs D0 through D7.
Bit 15 of the instruction is transferred to a flip-flop designated by the
symbol I.
Bits 0 through 11 are applied to the control logic gates.
The 4-bit sequence counter can count in binary from 0 through 15.
Outputs of the counter are decoded into 16 timing signals T0 through
T15.
The sequence counter SC can be incremented or cleared synchronously.
Example: SC is incremented to provide timing signals T0, T1, T2, T3, and
T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is
active.

Timing Diagram (Fig. 5-7)

The sequence counter SC responds to the positive transition of the clock.
The CLR input of SC is initially active. The first positive transition of the
clock clears SC to 0, activating the timing signal T0 during one clock
cycle.
SC is incremented with every positive clock transition unless its CLR input
is active, producing the sequence of timing signals T0, T1, T2, T3, T4, and
so on.
The last three waveforms show how SC is cleared when D3T4 = 1.
Output D3 from the operation decoder becomes active at the end of
timing signal T2.
When timing signal T4 becomes active, the output of the AND gate
implementing the control function D3T4 becomes active.
This signal is applied to the CLR input of SC. On the next positive clock
transition (marked T4), the counter is cleared to 0.
This causes the timing signal T0 to become active instead of T5, which
would have been active if SC were incremented instead of cleared.

